This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the positive real numbers. (Contributed by Thierry Arnoux, 4-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrp2 | ⊢ ℝ+ = ( 0 (,) +∞ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltpnf | ⊢ ( 𝑥 ∈ ℝ → 𝑥 < +∞ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) → 𝑥 < +∞ ) |
| 3 | 2 | pm4.71i | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ 𝑥 < +∞ ) ) |
| 4 | df-3an | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ↔ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ 𝑥 < +∞ ) ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 6 | elrp | ⊢ ( 𝑥 ∈ ℝ+ ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) | |
| 7 | 0xr | ⊢ 0 ∈ ℝ* | |
| 8 | pnfxr | ⊢ +∞ ∈ ℝ* | |
| 9 | elioo2 | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( 𝑥 ∈ ( 0 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ) ) | |
| 10 | 7 8 9 | mp2an | ⊢ ( 𝑥 ∈ ( 0 (,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ∧ 𝑥 < +∞ ) ) |
| 11 | 5 6 10 | 3bitr4i | ⊢ ( 𝑥 ∈ ℝ+ ↔ 𝑥 ∈ ( 0 (,) +∞ ) ) |
| 12 | 11 | eqriv | ⊢ ℝ+ = ( 0 (,) +∞ ) |