This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space addition law. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| hvass.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvass.3 | ⊢ 𝐶 ∈ ℋ | ||
| hvadd4.4 | ⊢ 𝐷 ∈ ℋ | ||
| Assertion | hvadd4i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvass.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvass.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvass.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | hvadd4.4 | ⊢ 𝐷 ∈ ℋ | |
| 5 | hvadd4 | ⊢ ( ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) ∧ ( 𝐶 ∈ ℋ ∧ 𝐷 ∈ ℋ ) ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) ) | |
| 6 | 1 2 3 4 5 | mp4an | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( 𝐶 +ℎ 𝐷 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( 𝐵 +ℎ 𝐷 ) ) |