This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two times a vector. (Contributed by NM, 22-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hv2times | ⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 2 | 1 | oveq1i | ⊢ ( 2 ·ℎ 𝐴 ) = ( ( 1 + 1 ) ·ℎ 𝐴 ) |
| 3 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 4 | ax-hvdistr2 | ⊢ ( ( 1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( ( 1 + 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) | |
| 5 | 3 3 4 | mp3an12 | ⊢ ( 𝐴 ∈ ℋ → ( ( 1 + 1 ) ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
| 6 | 2 5 | eqtrid | ⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
| 7 | ax-hvdistr1 | ⊢ ( ( 1 ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) | |
| 8 | 3 7 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
| 9 | 8 | anidms | ⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( ( 1 ·ℎ 𝐴 ) +ℎ ( 1 ·ℎ 𝐴 ) ) ) |
| 10 | hvaddcl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 +ℎ 𝐴 ) ∈ ℋ ) | |
| 11 | 10 | anidms | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 +ℎ 𝐴 ) ∈ ℋ ) |
| 12 | ax-hvmulid | ⊢ ( ( 𝐴 +ℎ 𝐴 ) ∈ ℋ → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( 𝐴 +ℎ 𝐴 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 ∈ ℋ → ( 1 ·ℎ ( 𝐴 +ℎ 𝐴 ) ) = ( 𝐴 +ℎ 𝐴 ) ) |
| 14 | 6 9 13 | 3eqtr2d | ⊢ ( 𝐴 ∈ ℋ → ( 2 ·ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐴 ) ) |