This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Weak deduction theorem eliminating four hypotheses. See comments in dedth2h . (Contributed by NM, 16-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dedth4h.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜏 ↔ 𝜂 ) ) | |
| dedth4h.2 | ⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( 𝜂 ↔ 𝜁 ) ) | ||
| dedth4h.3 | ⊢ ( 𝐶 = if ( 𝜒 , 𝐶 , 𝐹 ) → ( 𝜁 ↔ 𝜎 ) ) | ||
| dedth4h.4 | ⊢ ( 𝐷 = if ( 𝜃 , 𝐷 , 𝐺 ) → ( 𝜎 ↔ 𝜌 ) ) | ||
| dedth4h.5 | ⊢ 𝜌 | ||
| Assertion | dedth4h | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dedth4h.1 | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( 𝜏 ↔ 𝜂 ) ) | |
| 2 | dedth4h.2 | ⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( 𝜂 ↔ 𝜁 ) ) | |
| 3 | dedth4h.3 | ⊢ ( 𝐶 = if ( 𝜒 , 𝐶 , 𝐹 ) → ( 𝜁 ↔ 𝜎 ) ) | |
| 4 | dedth4h.4 | ⊢ ( 𝐷 = if ( 𝜃 , 𝐷 , 𝐺 ) → ( 𝜎 ↔ 𝜌 ) ) | |
| 5 | dedth4h.5 | ⊢ 𝜌 | |
| 6 | 1 | imbi2d | ⊢ ( 𝐴 = if ( 𝜑 , 𝐴 , 𝑅 ) → ( ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ↔ ( ( 𝜒 ∧ 𝜃 ) → 𝜂 ) ) ) |
| 7 | 2 | imbi2d | ⊢ ( 𝐵 = if ( 𝜓 , 𝐵 , 𝑆 ) → ( ( ( 𝜒 ∧ 𝜃 ) → 𝜂 ) ↔ ( ( 𝜒 ∧ 𝜃 ) → 𝜁 ) ) ) |
| 8 | 3 4 5 | dedth2h | ⊢ ( ( 𝜒 ∧ 𝜃 ) → 𝜁 ) |
| 9 | 6 7 8 | dedth2h | ⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝜒 ∧ 𝜃 ) → 𝜏 ) ) |
| 10 | 9 | imp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜒 ∧ 𝜃 ) ) → 𝜏 ) |