This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 11-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | ||
| hvaddcan.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | hvaddcani | ⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hvnegdi.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | hvnegdi.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | hvaddcan.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | oveq1 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) → ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) ) | |
| 5 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 6 | 5 1 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐴 ) ∈ ℋ |
| 7 | 1 2 6 | hvadd32i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐵 ) |
| 8 | 1 | hvnegidi | ⊢ ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) = 0ℎ |
| 9 | 8 | oveq1i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐵 ) = ( 0ℎ +ℎ 𝐵 ) |
| 10 | 2 | hvaddlidi | ⊢ ( 0ℎ +ℎ 𝐵 ) = 𝐵 |
| 11 | 7 9 10 | 3eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = 𝐵 |
| 12 | 1 3 6 | hvadd32i | ⊢ ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐶 ) |
| 13 | 8 | oveq1i | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐴 ) ) +ℎ 𝐶 ) = ( 0ℎ +ℎ 𝐶 ) |
| 14 | 3 | hvaddlidi | ⊢ ( 0ℎ +ℎ 𝐶 ) = 𝐶 |
| 15 | 12 13 14 | 3eqtri | ⊢ ( ( 𝐴 +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐴 ) ) = 𝐶 |
| 16 | 4 11 15 | 3eqtr3g | ⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) → 𝐵 = 𝐶 ) |
| 17 | oveq2 | ⊢ ( 𝐵 = 𝐶 → ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ) | |
| 18 | 16 17 | impbii | ⊢ ( ( 𝐴 +ℎ 𝐵 ) = ( 𝐴 +ℎ 𝐶 ) ↔ 𝐵 = 𝐶 ) |