This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribution of negative over subtraction. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvnegdi | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐴 −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) ) |
| 3 | oveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( 𝐵 −ℎ 𝐴 ) = ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 4 | 2 3 | eqeq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) → ( ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) ↔ ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 5 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) = ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) ) |
| 7 | oveq1 | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) | |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) → ( ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ 𝐵 ) ) = ( 𝐵 −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ↔ ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) ) ) |
| 9 | ifhvhv0 | ⊢ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ∈ ℋ | |
| 10 | ifhvhv0 | ⊢ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ∈ ℋ | |
| 11 | 9 10 | hvnegdii | ⊢ ( - 1 ·ℎ ( if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) −ℎ if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) ) ) = ( if ( 𝐵 ∈ ℋ , 𝐵 , 0ℎ ) −ℎ if ( 𝐴 ∈ ℋ , 𝐴 , 0ℎ ) ) |
| 12 | 4 8 11 | dedth2h | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( - 1 ·ℎ ( 𝐴 −ℎ 𝐵 ) ) = ( 𝐵 −ℎ 𝐴 ) ) |