This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert vector space commutative/associative law. (Contributed by Mario Carneiro, 15-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsub32 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) = ( 𝐶 +ℎ 𝐵 ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 +ℎ 𝐶 ) = ( 𝐶 +ℎ 𝐵 ) ) |
| 3 | 2 | oveq2d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) = ( 𝐴 −ℎ ( 𝐶 +ℎ 𝐵 ) ) ) |
| 4 | hvsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( 𝐴 −ℎ ( 𝐵 +ℎ 𝐶 ) ) ) | |
| 5 | hvsubass | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) −ℎ 𝐵 ) = ( 𝐴 −ℎ ( 𝐶 +ℎ 𝐵 ) ) ) | |
| 6 | 5 | 3com23 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐶 ) −ℎ 𝐵 ) = ( 𝐴 −ℎ ( 𝐶 +ℎ 𝐵 ) ) ) |
| 7 | 3 4 6 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 −ℎ 𝐵 ) −ℎ 𝐶 ) = ( ( 𝐴 −ℎ 𝐶 ) −ℎ 𝐵 ) ) |