This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddcan2 | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐶 +ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐶 ) ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐴 ) = ( 𝐴 +ℎ 𝐶 ) ) |
| 3 | ax-hvcom | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐶 ) ) | |
| 4 | 3 | 3adant2 | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( 𝐶 +ℎ 𝐵 ) = ( 𝐵 +ℎ 𝐶 ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 +ℎ 𝐴 ) = ( 𝐶 +ℎ 𝐵 ) ↔ ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ) ) |
| 6 | hvaddcan | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐶 +ℎ 𝐴 ) = ( 𝐶 +ℎ 𝐵 ) ↔ 𝐴 = 𝐵 ) ) | |
| 7 | 5 6 | bitr3d | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |
| 8 | 7 | 3coml | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 +ℎ 𝐶 ) = ( 𝐵 +ℎ 𝐶 ) ↔ 𝐴 = 𝐵 ) ) |