This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddcan2 | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h C ) = ( B +h C ) <-> A = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hvcom | |- ( ( C e. ~H /\ A e. ~H ) -> ( C +h A ) = ( A +h C ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C +h A ) = ( A +h C ) ) |
| 3 | ax-hvcom | |- ( ( C e. ~H /\ B e. ~H ) -> ( C +h B ) = ( B +h C ) ) |
|
| 4 | 3 | 3adant2 | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( C +h B ) = ( B +h C ) ) |
| 5 | 2 4 | eqeq12d | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( C +h A ) = ( C +h B ) <-> ( A +h C ) = ( B +h C ) ) ) |
| 6 | hvaddcan | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( C +h A ) = ( C +h B ) <-> A = B ) ) |
|
| 7 | 5 6 | bitr3d | |- ( ( C e. ~H /\ A e. ~H /\ B e. ~H ) -> ( ( A +h C ) = ( B +h C ) <-> A = B ) ) |
| 8 | 7 | 3coml | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h C ) = ( B +h C ) <-> A = B ) ) |