This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvaddcan | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) = ( A +h C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A +h B ) = ( if ( A e. ~H , A , 0h ) +h B ) ) |
|
| 2 | oveq1 | |- ( A = if ( A e. ~H , A , 0h ) -> ( A +h C ) = ( if ( A e. ~H , A , 0h ) +h C ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( A +h B ) = ( A +h C ) <-> ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h C ) ) ) |
| 4 | 3 | bibi1d | |- ( A = if ( A e. ~H , A , 0h ) -> ( ( ( A +h B ) = ( A +h C ) <-> B = C ) <-> ( ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h C ) <-> B = C ) ) ) |
| 5 | oveq2 | |- ( B = if ( B e. ~H , B , 0h ) -> ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) ) |
|
| 6 | 5 | eqeq1d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h C ) <-> ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h C ) ) ) |
| 7 | eqeq1 | |- ( B = if ( B e. ~H , B , 0h ) -> ( B = C <-> if ( B e. ~H , B , 0h ) = C ) ) |
|
| 8 | 6 7 | bibi12d | |- ( B = if ( B e. ~H , B , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) +h B ) = ( if ( A e. ~H , A , 0h ) +h C ) <-> B = C ) <-> ( ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h C ) <-> if ( B e. ~H , B , 0h ) = C ) ) ) |
| 9 | oveq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( A e. ~H , A , 0h ) +h C ) = ( if ( A e. ~H , A , 0h ) +h if ( C e. ~H , C , 0h ) ) ) |
|
| 10 | 9 | eqeq2d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h C ) <-> ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h if ( C e. ~H , C , 0h ) ) ) ) |
| 11 | eqeq2 | |- ( C = if ( C e. ~H , C , 0h ) -> ( if ( B e. ~H , B , 0h ) = C <-> if ( B e. ~H , B , 0h ) = if ( C e. ~H , C , 0h ) ) ) |
|
| 12 | 10 11 | bibi12d | |- ( C = if ( C e. ~H , C , 0h ) -> ( ( ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h C ) <-> if ( B e. ~H , B , 0h ) = C ) <-> ( ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h if ( C e. ~H , C , 0h ) ) <-> if ( B e. ~H , B , 0h ) = if ( C e. ~H , C , 0h ) ) ) ) |
| 13 | ifhvhv0 | |- if ( A e. ~H , A , 0h ) e. ~H |
|
| 14 | ifhvhv0 | |- if ( B e. ~H , B , 0h ) e. ~H |
|
| 15 | ifhvhv0 | |- if ( C e. ~H , C , 0h ) e. ~H |
|
| 16 | 13 14 15 | hvaddcani | |- ( ( if ( A e. ~H , A , 0h ) +h if ( B e. ~H , B , 0h ) ) = ( if ( A e. ~H , A , 0h ) +h if ( C e. ~H , C , 0h ) ) <-> if ( B e. ~H , B , 0h ) = if ( C e. ~H , C , 0h ) ) |
| 17 | 4 8 12 16 | dedth3h | |- ( ( A e. ~H /\ B e. ~H /\ C e. ~H ) -> ( ( A +h B ) = ( A +h C ) <-> B = C ) ) |