This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| homaval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | ||
| homaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| homaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | homaval | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | homaval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | |
| 5 | homaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | homaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | df-ov | ⊢ ( 𝑋 𝐻 𝑌 ) = ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 8 | 1 2 3 4 | homafval | ⊢ ( 𝜑 → 𝐻 = ( 𝑧 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑧 } × ( 𝐽 ‘ 𝑧 ) ) ) ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → 𝑧 = 〈 𝑋 , 𝑌 〉 ) | |
| 10 | 9 | sneqd | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → { 𝑧 } = { 〈 𝑋 , 𝑌 〉 } ) |
| 11 | 9 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( 𝐽 ‘ 𝑧 ) = ( 𝐽 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
| 12 | df-ov | ⊢ ( 𝑋 𝐽 𝑌 ) = ( 𝐽 ‘ 〈 𝑋 , 𝑌 〉 ) | |
| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( 𝐽 ‘ 𝑧 ) = ( 𝑋 𝐽 𝑌 ) ) |
| 14 | 10 13 | xpeq12d | ⊢ ( ( 𝜑 ∧ 𝑧 = 〈 𝑋 , 𝑌 〉 ) → ( { 𝑧 } × ( 𝐽 ‘ 𝑧 ) ) = ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ) |
| 15 | 5 6 | opelxpd | ⊢ ( 𝜑 → 〈 𝑋 , 𝑌 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 16 | snex | ⊢ { 〈 𝑋 , 𝑌 〉 } ∈ V | |
| 17 | ovex | ⊢ ( 𝑋 𝐽 𝑌 ) ∈ V | |
| 18 | 16 17 | xpex | ⊢ ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ∈ V |
| 19 | 18 | a1i | ⊢ ( 𝜑 → ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ∈ V ) |
| 20 | 8 14 15 19 | fvmptd | ⊢ ( 𝜑 → ( 𝐻 ‘ 〈 𝑋 , 𝑌 〉 ) = ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ) |
| 21 | 7 20 | eqtrid | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ) |