This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | |- H = ( HomA ` C ) |
|
| homafval.b | |- B = ( Base ` C ) |
||
| homafval.c | |- ( ph -> C e. Cat ) |
||
| homaval.j | |- J = ( Hom ` C ) |
||
| homaval.x | |- ( ph -> X e. B ) |
||
| homaval.y | |- ( ph -> Y e. B ) |
||
| Assertion | homaval | |- ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | |- H = ( HomA ` C ) |
|
| 2 | homafval.b | |- B = ( Base ` C ) |
|
| 3 | homafval.c | |- ( ph -> C e. Cat ) |
|
| 4 | homaval.j | |- J = ( Hom ` C ) |
|
| 5 | homaval.x | |- ( ph -> X e. B ) |
|
| 6 | homaval.y | |- ( ph -> Y e. B ) |
|
| 7 | df-ov | |- ( X H Y ) = ( H ` <. X , Y >. ) |
|
| 8 | 1 2 3 4 | homafval | |- ( ph -> H = ( z e. ( B X. B ) |-> ( { z } X. ( J ` z ) ) ) ) |
| 9 | simpr | |- ( ( ph /\ z = <. X , Y >. ) -> z = <. X , Y >. ) |
|
| 10 | 9 | sneqd | |- ( ( ph /\ z = <. X , Y >. ) -> { z } = { <. X , Y >. } ) |
| 11 | 9 | fveq2d | |- ( ( ph /\ z = <. X , Y >. ) -> ( J ` z ) = ( J ` <. X , Y >. ) ) |
| 12 | df-ov | |- ( X J Y ) = ( J ` <. X , Y >. ) |
|
| 13 | 11 12 | eqtr4di | |- ( ( ph /\ z = <. X , Y >. ) -> ( J ` z ) = ( X J Y ) ) |
| 14 | 10 13 | xpeq12d | |- ( ( ph /\ z = <. X , Y >. ) -> ( { z } X. ( J ` z ) ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |
| 15 | 5 6 | opelxpd | |- ( ph -> <. X , Y >. e. ( B X. B ) ) |
| 16 | snex | |- { <. X , Y >. } e. _V |
|
| 17 | ovex | |- ( X J Y ) e. _V |
|
| 18 | 16 17 | xpex | |- ( { <. X , Y >. } X. ( X J Y ) ) e. _V |
| 19 | 18 | a1i | |- ( ph -> ( { <. X , Y >. } X. ( X J Y ) ) e. _V ) |
| 20 | 8 14 15 19 | fvmptd | |- ( ph -> ( H ` <. X , Y >. ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |
| 21 | 7 20 | eqtrid | |- ( ph -> ( X H Y ) = ( { <. X , Y >. } X. ( X J Y ) ) ) |