This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| homafval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | ||
| Assertion | homafval | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | homafval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | |
| 5 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = ( Base ‘ 𝐶 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Base ‘ 𝑐 ) = 𝐵 ) |
| 7 | 6 | sqxpeqd | ⊢ ( 𝑐 = 𝐶 → ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) = ( 𝐵 × 𝐵 ) ) |
| 8 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = ( Hom ‘ 𝐶 ) ) | |
| 9 | 8 4 | eqtr4di | ⊢ ( 𝑐 = 𝐶 → ( Hom ‘ 𝑐 ) = 𝐽 ) |
| 10 | 9 | fveq1d | ⊢ ( 𝑐 = 𝐶 → ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 11 | 10 | xpeq2d | ⊢ ( 𝑐 = 𝐶 → ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) = ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) |
| 12 | 7 11 | mpteq12dv | ⊢ ( 𝑐 = 𝐶 → ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) ) |
| 13 | df-homa | ⊢ Homa = ( 𝑐 ∈ Cat ↦ ( 𝑥 ∈ ( ( Base ‘ 𝑐 ) × ( Base ‘ 𝑐 ) ) ↦ ( { 𝑥 } × ( ( Hom ‘ 𝑐 ) ‘ 𝑥 ) ) ) ) | |
| 14 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 15 | 14 14 | xpex | ⊢ ( 𝐵 × 𝐵 ) ∈ V |
| 16 | 15 | mptex | ⊢ ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) ∈ V |
| 17 | 12 13 16 | fvmpt | ⊢ ( 𝐶 ∈ Cat → ( Homa ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) ) |
| 18 | 3 17 | syl | ⊢ ( 𝜑 → ( Homa ‘ 𝐶 ) = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) ) |
| 19 | 1 18 | eqtrid | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ ( 𝐵 × 𝐵 ) ↦ ( { 𝑥 } × ( 𝐽 ‘ 𝑥 ) ) ) ) |