This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| homaval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | ||
| homaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| homaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | elhoma | ⊢ ( 𝜑 → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 2 | homafval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | homafval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | homaval.j | ⊢ 𝐽 = ( Hom ‘ 𝐶 ) | |
| 5 | homaval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | homaval.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 5 6 | homaval | ⊢ ( 𝜑 → ( 𝑋 𝐻 𝑌 ) = ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) ) |
| 8 | 7 | breqd | ⊢ ( 𝜑 → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ 𝑍 ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) 𝐹 ) ) |
| 9 | brxp | ⊢ ( 𝑍 ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) 𝐹 ↔ ( 𝑍 ∈ { 〈 𝑋 , 𝑌 〉 } ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) | |
| 10 | opex | ⊢ 〈 𝑋 , 𝑌 〉 ∈ V | |
| 11 | 10 | elsn2 | ⊢ ( 𝑍 ∈ { 〈 𝑋 , 𝑌 〉 } ↔ 𝑍 = 〈 𝑋 , 𝑌 〉 ) |
| 12 | 11 | anbi1i | ⊢ ( ( 𝑍 ∈ { 〈 𝑋 , 𝑌 〉 } ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) |
| 13 | 9 12 | bitri | ⊢ ( 𝑍 ( { 〈 𝑋 , 𝑌 〉 } × ( 𝑋 𝐽 𝑌 ) ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) |
| 14 | 8 13 | bitrdi | ⊢ ( 𝜑 → ( 𝑍 ( 𝑋 𝐻 𝑌 ) 𝐹 ↔ ( 𝑍 = 〈 𝑋 , 𝑌 〉 ∧ 𝐹 ∈ ( 𝑋 𝐽 𝑌 ) ) ) ) |