This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Functionality of the disjointified hom-set function. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homarcl.h | |- H = ( HomA ` C ) |
|
| homafval.b | |- B = ( Base ` C ) |
||
| homafval.c | |- ( ph -> C e. Cat ) |
||
| Assertion | homaf | |- ( ph -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homarcl.h | |- H = ( HomA ` C ) |
|
| 2 | homafval.b | |- B = ( Base ` C ) |
|
| 3 | homafval.c | |- ( ph -> C e. Cat ) |
|
| 4 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 5 | 1 2 3 4 | homafval | |- ( ph -> H = ( x e. ( B X. B ) |-> ( { x } X. ( ( Hom ` C ) ` x ) ) ) ) |
| 6 | snssi | |- ( x e. ( B X. B ) -> { x } C_ ( B X. B ) ) |
|
| 7 | 6 | adantl | |- ( ( ph /\ x e. ( B X. B ) ) -> { x } C_ ( B X. B ) ) |
| 8 | ssv | |- ( ( Hom ` C ) ` x ) C_ _V |
|
| 9 | xpss12 | |- ( ( { x } C_ ( B X. B ) /\ ( ( Hom ` C ) ` x ) C_ _V ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( ph /\ x e. ( B X. B ) ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) ) |
| 11 | vsnex | |- { x } e. _V |
|
| 12 | fvex | |- ( ( Hom ` C ) ` x ) e. _V |
|
| 13 | 11 12 | xpex | |- ( { x } X. ( ( Hom ` C ) ` x ) ) e. _V |
| 14 | 13 | elpw | |- ( ( { x } X. ( ( Hom ` C ) ` x ) ) e. ~P ( ( B X. B ) X. _V ) <-> ( { x } X. ( ( Hom ` C ) ` x ) ) C_ ( ( B X. B ) X. _V ) ) |
| 15 | 10 14 | sylibr | |- ( ( ph /\ x e. ( B X. B ) ) -> ( { x } X. ( ( Hom ` C ) ` x ) ) e. ~P ( ( B X. B ) X. _V ) ) |
| 16 | 5 15 | fmpt3d | |- ( ph -> H : ( B X. B ) --> ~P ( ( B X. B ) X. _V ) ) |