This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hoaddrid.1 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| Assertion | hoaddridi | ⊢ ( 𝑇 +op 0hop ) = 𝑇 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoaddrid.1 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 2 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 3 | hosval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 0hop : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 0hop ‘ 𝑥 ) ) ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 0hop ‘ 𝑥 ) ) ) |
| 5 | ho0val | ⊢ ( 𝑥 ∈ ℋ → ( 0hop ‘ 𝑥 ) = 0ℎ ) | |
| 6 | 5 | oveq2d | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 0hop ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ 0ℎ ) ) |
| 7 | 1 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 8 | ax-hvaddid | ⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ 0ℎ ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 ‘ 𝑥 ) +ℎ 0ℎ ) = ( 𝑇 ‘ 𝑥 ) ) |
| 10 | 4 6 9 | 3eqtrd | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ) |
| 11 | 10 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) |
| 12 | 1 2 | hoaddcli | ⊢ ( 𝑇 +op 0hop ) : ℋ ⟶ ℋ |
| 13 | 12 1 | hoeqi | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑇 +op 0hop ) ‘ 𝑥 ) = ( 𝑇 ‘ 𝑥 ) ↔ ( 𝑇 +op 0hop ) = 𝑇 ) |
| 14 | 11 13 | mpbi | ⊢ ( 𝑇 +op 0hop ) = 𝑇 |