This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of a Hilbert space operator with the zero operator. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hoaddrid.1 | |- T : ~H --> ~H |
|
| Assertion | hoaddridi | |- ( T +op 0hop ) = T |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoaddrid.1 | |- T : ~H --> ~H |
|
| 2 | ho0f | |- 0hop : ~H --> ~H |
|
| 3 | hosval | |- ( ( T : ~H --> ~H /\ 0hop : ~H --> ~H /\ x e. ~H ) -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) ) |
|
| 4 | 1 2 3 | mp3an12 | |- ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( ( T ` x ) +h ( 0hop ` x ) ) ) |
| 5 | ho0val | |- ( x e. ~H -> ( 0hop ` x ) = 0h ) |
|
| 6 | 5 | oveq2d | |- ( x e. ~H -> ( ( T ` x ) +h ( 0hop ` x ) ) = ( ( T ` x ) +h 0h ) ) |
| 7 | 1 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 8 | ax-hvaddid | |- ( ( T ` x ) e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) ) |
|
| 9 | 7 8 | syl | |- ( x e. ~H -> ( ( T ` x ) +h 0h ) = ( T ` x ) ) |
| 10 | 4 6 9 | 3eqtrd | |- ( x e. ~H -> ( ( T +op 0hop ) ` x ) = ( T ` x ) ) |
| 11 | 10 | rgen | |- A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) |
| 12 | 1 2 | hoaddcli | |- ( T +op 0hop ) : ~H --> ~H |
| 13 | 12 1 | hoeqi | |- ( A. x e. ~H ( ( T +op 0hop ) ` x ) = ( T ` x ) <-> ( T +op 0hop ) = T ) |
| 14 | 11 13 | mpbi | |- ( T +op 0hop ) = T |