This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of a Hilbert space operator from itself. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hoaddrid.1 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| Assertion | hodidi | ⊢ ( 𝑇 −op 𝑇 ) = 0hop |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoaddrid.1 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 2 | 1 | hoaddridi | ⊢ ( 𝑇 +op 0hop ) = 𝑇 |
| 3 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 4 | 1 1 3 | hodsi | ⊢ ( ( 𝑇 −op 𝑇 ) = 0hop ↔ ( 𝑇 +op 0hop ) = 𝑇 ) |
| 5 | 2 4 | mpbir | ⊢ ( 𝑇 −op 𝑇 ) = 0hop |