This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | ||
| Assertion | hoaddcomi | ⊢ ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | ⊢ 𝑆 : ℋ ⟶ ℋ | |
| 2 | hoeq.2 | ⊢ 𝑇 : ℋ ⟶ ℋ | |
| 3 | 1 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 4 | 2 | ffvelcdmi | ⊢ ( 𝑥 ∈ ℋ → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 5 | ax-hvcom | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 7 | hosval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) | |
| 8 | 1 2 7 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) |
| 9 | hosval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 10 | 2 1 9 | mp3an12 | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑆 ‘ 𝑥 ) ) ) |
| 11 | 6 8 10 | 3eqtr4d | ⊢ ( 𝑥 ∈ ℋ → ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) ) |
| 12 | 11 | rgen | ⊢ ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) |
| 13 | 1 2 | hoaddcli | ⊢ ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ |
| 14 | 2 1 | hoaddcli | ⊢ ( 𝑇 +op 𝑆 ) : ℋ ⟶ ℋ |
| 15 | 13 14 | hoeqi | ⊢ ( ∀ 𝑥 ∈ ℋ ( ( 𝑆 +op 𝑇 ) ‘ 𝑥 ) = ( ( 𝑇 +op 𝑆 ) ‘ 𝑥 ) ↔ ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) ) |
| 16 | 12 15 | mpbi | ⊢ ( 𝑆 +op 𝑇 ) = ( 𝑇 +op 𝑆 ) |