This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutativity of sum of Hilbert space operators. (Contributed by NM, 15-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hoeq.1 | |- S : ~H --> ~H |
|
| hoeq.2 | |- T : ~H --> ~H |
||
| Assertion | hoaddcomi | |- ( S +op T ) = ( T +op S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hoeq.1 | |- S : ~H --> ~H |
|
| 2 | hoeq.2 | |- T : ~H --> ~H |
|
| 3 | 1 | ffvelcdmi | |- ( x e. ~H -> ( S ` x ) e. ~H ) |
| 4 | 2 | ffvelcdmi | |- ( x e. ~H -> ( T ` x ) e. ~H ) |
| 5 | ax-hvcom | |- ( ( ( S ` x ) e. ~H /\ ( T ` x ) e. ~H ) -> ( ( S ` x ) +h ( T ` x ) ) = ( ( T ` x ) +h ( S ` x ) ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( x e. ~H -> ( ( S ` x ) +h ( T ` x ) ) = ( ( T ` x ) +h ( S ` x ) ) ) |
| 7 | hosval | |- ( ( S : ~H --> ~H /\ T : ~H --> ~H /\ x e. ~H ) -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
|
| 8 | 1 2 7 | mp3an12 | |- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( S ` x ) +h ( T ` x ) ) ) |
| 9 | hosval | |- ( ( T : ~H --> ~H /\ S : ~H --> ~H /\ x e. ~H ) -> ( ( T +op S ) ` x ) = ( ( T ` x ) +h ( S ` x ) ) ) |
|
| 10 | 2 1 9 | mp3an12 | |- ( x e. ~H -> ( ( T +op S ) ` x ) = ( ( T ` x ) +h ( S ` x ) ) ) |
| 11 | 6 8 10 | 3eqtr4d | |- ( x e. ~H -> ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) ) |
| 12 | 11 | rgen | |- A. x e. ~H ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) |
| 13 | 1 2 | hoaddcli | |- ( S +op T ) : ~H --> ~H |
| 14 | 2 1 | hoaddcli | |- ( T +op S ) : ~H --> ~H |
| 15 | 13 14 | hoeqi | |- ( A. x e. ~H ( ( S +op T ) ` x ) = ( ( T +op S ) ` x ) <-> ( S +op T ) = ( T +op S ) ) |
| 16 | 12 15 | mpbi | |- ( S +op T ) = ( T +op S ) |