This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of difference of Hilbert space operators. (Contributed by NM, 23-Aug-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hosubcl | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 −op 𝑇 ) : ℋ ⟶ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( 𝑆 −op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) ) | |
| 2 | 1 | feq1d | ⊢ ( 𝑆 = if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) → ( ( 𝑆 −op 𝑇 ) : ℋ ⟶ ℋ ↔ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) : ℋ ⟶ ℋ ) ) |
| 3 | oveq2 | ⊢ ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) = ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) ) | |
| 4 | 3 | feq1d | ⊢ ( 𝑇 = if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) → ( ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op 𝑇 ) : ℋ ⟶ ℋ ↔ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) : ℋ ⟶ ℋ ) ) |
| 5 | ho0f | ⊢ 0hop : ℋ ⟶ ℋ | |
| 6 | 5 | elimf | ⊢ if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) : ℋ ⟶ ℋ |
| 7 | 5 | elimf | ⊢ if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) : ℋ ⟶ ℋ |
| 8 | 6 7 | hosubcli | ⊢ ( if ( 𝑆 : ℋ ⟶ ℋ , 𝑆 , 0hop ) −op if ( 𝑇 : ℋ ⟶ ℋ , 𝑇 , 0hop ) ) : ℋ ⟶ ℋ |
| 9 | 2 4 8 | dedth2h | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 −op 𝑇 ) : ℋ ⟶ ℋ ) |