This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmpher | ⊢ ≃ Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph | ⊢ ≃ = ( ◡ Homeo “ ( V ∖ 1o ) ) | |
| 2 | cnvimass | ⊢ ( ◡ Homeo “ ( V ∖ 1o ) ) ⊆ dom Homeo | |
| 3 | hmeofn | ⊢ Homeo Fn ( Top × Top ) | |
| 4 | 3 | fndmi | ⊢ dom Homeo = ( Top × Top ) |
| 5 | 2 4 | sseqtri | ⊢ ( ◡ Homeo “ ( V ∖ 1o ) ) ⊆ ( Top × Top ) |
| 6 | 1 5 | eqsstri | ⊢ ≃ ⊆ ( Top × Top ) |
| 7 | relxp | ⊢ Rel ( Top × Top ) | |
| 8 | relss | ⊢ ( ≃ ⊆ ( Top × Top ) → ( Rel ( Top × Top ) → Rel ≃ ) ) | |
| 9 | 6 7 8 | mp2 | ⊢ Rel ≃ |
| 10 | hmphsym | ⊢ ( 𝑥 ≃ 𝑦 → 𝑦 ≃ 𝑥 ) | |
| 11 | hmphtr | ⊢ ( ( 𝑥 ≃ 𝑦 ∧ 𝑦 ≃ 𝑧 ) → 𝑥 ≃ 𝑧 ) | |
| 12 | hmphref | ⊢ ( 𝑥 ∈ Top → 𝑥 ≃ 𝑥 ) | |
| 13 | hmphtop1 | ⊢ ( 𝑥 ≃ 𝑥 → 𝑥 ∈ Top ) | |
| 14 | 12 13 | impbii | ⊢ ( 𝑥 ∈ Top ↔ 𝑥 ≃ 𝑥 ) |
| 15 | 9 10 11 14 | iseri | ⊢ ≃ Er Top |