This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Is homeomorphic to" is an equivalence relation. (Contributed by FL, 22-Mar-2007) (Revised by Mario Carneiro, 23-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmpher | |- ~= Er Top |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hmph | |- ~= = ( `' Homeo " ( _V \ 1o ) ) |
|
| 2 | cnvimass | |- ( `' Homeo " ( _V \ 1o ) ) C_ dom Homeo |
|
| 3 | hmeofn | |- Homeo Fn ( Top X. Top ) |
|
| 4 | 3 | fndmi | |- dom Homeo = ( Top X. Top ) |
| 5 | 2 4 | sseqtri | |- ( `' Homeo " ( _V \ 1o ) ) C_ ( Top X. Top ) |
| 6 | 1 5 | eqsstri | |- ~= C_ ( Top X. Top ) |
| 7 | relxp | |- Rel ( Top X. Top ) |
|
| 8 | relss | |- ( ~= C_ ( Top X. Top ) -> ( Rel ( Top X. Top ) -> Rel ~= ) ) |
|
| 9 | 6 7 8 | mp2 | |- Rel ~= |
| 10 | hmphsym | |- ( x ~= y -> y ~= x ) |
|
| 11 | hmphtr | |- ( ( x ~= y /\ y ~= z ) -> x ~= z ) |
|
| 12 | hmphref | |- ( x e. Top -> x ~= x ) |
|
| 13 | hmphtop1 | |- ( x ~= x -> x e. Top ) |
|
| 14 | 12 13 | impbii | |- ( x e. Top <-> x ~= x ) |
| 15 | 9 10 11 14 | iseri | |- ~= Er Top |