This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmphdis | ⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphdis.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | pwuni | ⊢ 𝐽 ⊆ 𝒫 ∪ 𝐽 | |
| 3 | 1 | pweqi | ⊢ 𝒫 𝑋 = 𝒫 ∪ 𝐽 |
| 4 | 2 3 | sseqtrri | ⊢ 𝐽 ⊆ 𝒫 𝑋 |
| 5 | 4 | a1i | ⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝐽 ⊆ 𝒫 𝑋 ) |
| 6 | hmph | ⊢ ( 𝐽 ≃ 𝒫 𝐴 ↔ ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ ) | |
| 7 | n0 | ⊢ ( ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ ↔ ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ) | |
| 8 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 9 | imassrn | ⊢ ( 𝑓 “ 𝑥 ) ⊆ ran 𝑓 | |
| 10 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 11 | 10 | eqcomi | ⊢ 𝐴 = ∪ 𝒫 𝐴 |
| 12 | 1 11 | hmeof1o | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝑓 : 𝑋 –1-1-onto→ 𝐴 ) |
| 13 | f1of | ⊢ ( 𝑓 : 𝑋 –1-1-onto→ 𝐴 → 𝑓 : 𝑋 ⟶ 𝐴 ) | |
| 14 | frn | ⊢ ( 𝑓 : 𝑋 ⟶ 𝐴 → ran 𝑓 ⊆ 𝐴 ) | |
| 15 | 12 13 14 | 3syl | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ran 𝑓 ⊆ 𝐴 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ran 𝑓 ⊆ 𝐴 ) |
| 17 | 9 16 | sstrid | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
| 18 | vex | ⊢ 𝑓 ∈ V | |
| 19 | 18 | imaex | ⊢ ( 𝑓 “ 𝑥 ) ∈ V |
| 20 | 19 | elpw | ⊢ ( ( 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ↔ ( 𝑓 “ 𝑥 ) ⊆ 𝐴 ) |
| 21 | 17 20 | sylibr | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) |
| 22 | 1 | hmeoopn | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → ( 𝑥 ∈ 𝐽 ↔ ( 𝑓 “ 𝑥 ) ∈ 𝒫 𝐴 ) ) |
| 23 | 21 22 | mpbird | ⊢ ( ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) ∧ 𝑥 ⊆ 𝑋 ) → 𝑥 ∈ 𝐽 ) |
| 24 | 23 | ex | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ( 𝑥 ⊆ 𝑋 → 𝑥 ∈ 𝐽 ) ) |
| 25 | 8 24 | syl5 | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ∈ 𝐽 ) ) |
| 26 | 25 | ssrdv | ⊢ ( 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝒫 𝑋 ⊆ 𝐽 ) |
| 27 | 26 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 ∈ ( 𝐽 Homeo 𝒫 𝐴 ) → 𝒫 𝑋 ⊆ 𝐽 ) |
| 28 | 7 27 | sylbi | ⊢ ( ( 𝐽 Homeo 𝒫 𝐴 ) ≠ ∅ → 𝒫 𝑋 ⊆ 𝐽 ) |
| 29 | 6 28 | sylbi | ⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝒫 𝑋 ⊆ 𝐽 ) |
| 30 | 5 29 | eqssd | ⊢ ( 𝐽 ≃ 𝒫 𝐴 → 𝐽 = 𝒫 𝑋 ) |