This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve topological discreteness. (Contributed by Mario Carneiro, 10-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmphdis.1 | |- X = U. J |
|
| Assertion | hmphdis | |- ( J ~= ~P A -> J = ~P X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmphdis.1 | |- X = U. J |
|
| 2 | pwuni | |- J C_ ~P U. J |
|
| 3 | 1 | pweqi | |- ~P X = ~P U. J |
| 4 | 2 3 | sseqtrri | |- J C_ ~P X |
| 5 | 4 | a1i | |- ( J ~= ~P A -> J C_ ~P X ) |
| 6 | hmph | |- ( J ~= ~P A <-> ( J Homeo ~P A ) =/= (/) ) |
|
| 7 | n0 | |- ( ( J Homeo ~P A ) =/= (/) <-> E. f f e. ( J Homeo ~P A ) ) |
|
| 8 | elpwi | |- ( x e. ~P X -> x C_ X ) |
|
| 9 | imassrn | |- ( f " x ) C_ ran f |
|
| 10 | unipw | |- U. ~P A = A |
|
| 11 | 10 | eqcomi | |- A = U. ~P A |
| 12 | 1 11 | hmeof1o | |- ( f e. ( J Homeo ~P A ) -> f : X -1-1-onto-> A ) |
| 13 | f1of | |- ( f : X -1-1-onto-> A -> f : X --> A ) |
|
| 14 | frn | |- ( f : X --> A -> ran f C_ A ) |
|
| 15 | 12 13 14 | 3syl | |- ( f e. ( J Homeo ~P A ) -> ran f C_ A ) |
| 16 | 15 | adantr | |- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ran f C_ A ) |
| 17 | 9 16 | sstrid | |- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ( f " x ) C_ A ) |
| 18 | vex | |- f e. _V |
|
| 19 | 18 | imaex | |- ( f " x ) e. _V |
| 20 | 19 | elpw | |- ( ( f " x ) e. ~P A <-> ( f " x ) C_ A ) |
| 21 | 17 20 | sylibr | |- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ( f " x ) e. ~P A ) |
| 22 | 1 | hmeoopn | |- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> ( x e. J <-> ( f " x ) e. ~P A ) ) |
| 23 | 21 22 | mpbird | |- ( ( f e. ( J Homeo ~P A ) /\ x C_ X ) -> x e. J ) |
| 24 | 23 | ex | |- ( f e. ( J Homeo ~P A ) -> ( x C_ X -> x e. J ) ) |
| 25 | 8 24 | syl5 | |- ( f e. ( J Homeo ~P A ) -> ( x e. ~P X -> x e. J ) ) |
| 26 | 25 | ssrdv | |- ( f e. ( J Homeo ~P A ) -> ~P X C_ J ) |
| 27 | 26 | exlimiv | |- ( E. f f e. ( J Homeo ~P A ) -> ~P X C_ J ) |
| 28 | 7 27 | sylbi | |- ( ( J Homeo ~P A ) =/= (/) -> ~P X C_ J ) |
| 29 | 6 28 | sylbi | |- ( J ~= ~P A -> ~P X C_ J ) |
| 30 | 5 29 | eqssd | |- ( J ~= ~P A -> J = ~P X ) |