This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two Hermitian operators is Hermitian. (Contributed by NM, 23-Jul-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmops | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 +op 𝑈 ) ∈ HrmOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmopf | ⊢ ( 𝑇 ∈ HrmOp → 𝑇 : ℋ ⟶ ℋ ) | |
| 2 | hmopf | ⊢ ( 𝑈 ∈ HrmOp → 𝑈 : ℋ ⟶ ℋ ) | |
| 3 | hoaddcl | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) → ( 𝑇 +op 𝑈 ) : ℋ ⟶ ℋ ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 +op 𝑈 ) : ℋ ⟶ ℋ ) |
| 5 | hmop | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 7 | hmop | ⊢ ( ( 𝑈 ∈ HrmOp ∧ 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) | |
| 8 | 7 | 3expb | ⊢ ( ( 𝑈 ∈ HrmOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) = ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 9 | 6 8 | oveqan12d | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ∧ ( 𝑈 ∈ HrmOp ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) + ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 10 | 9 | anandirs | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) + ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 11 | 1 2 | anim12i | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ) |
| 12 | hosval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) = ( ( 𝑇 ‘ 𝑦 ) +ℎ ( 𝑈 ‘ 𝑦 ) ) ) | |
| 13 | 12 | oveq2d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( 𝑇 ‘ 𝑦 ) +ℎ ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 14 | 13 | 3expa | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( 𝑇 ‘ 𝑦 ) +ℎ ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 15 | 14 | adantrl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( 𝑥 ·ih ( ( 𝑇 ‘ 𝑦 ) +ℎ ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 16 | simprl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑥 ∈ ℋ ) | |
| 17 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) | |
| 18 | 17 | ad2ant2rl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 19 | ffvelcdm | ⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑈 ‘ 𝑦 ) ∈ ℋ ) | |
| 20 | 19 | ad2ant2l | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑈 ‘ 𝑦 ) ∈ ℋ ) |
| 21 | his7 | ⊢ ( ( 𝑥 ∈ ℋ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ∧ ( 𝑈 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ih ( ( 𝑇 ‘ 𝑦 ) +ℎ ( 𝑈 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) + ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) ) ) | |
| 22 | 16 18 20 21 | syl3anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 ‘ 𝑦 ) +ℎ ( 𝑈 ‘ 𝑦 ) ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) + ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 23 | 15 22 | eqtrd | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) + ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 24 | 11 23 | sylan | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( ( 𝑥 ·ih ( 𝑇 ‘ 𝑦 ) ) + ( 𝑥 ·ih ( 𝑈 ‘ 𝑦 ) ) ) ) |
| 25 | hosval | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ) | |
| 26 | 25 | oveq1d | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 27 | 26 | 3expa | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 28 | 27 | adantrr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑦 ) ) |
| 29 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 30 | 29 | ad2ant2r | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 31 | ffvelcdm | ⊢ ( ( 𝑈 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) | |
| 32 | 31 | ad2ant2lr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑈 ‘ 𝑥 ) ∈ ℋ ) |
| 33 | simprr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → 𝑦 ∈ ℋ ) | |
| 34 | ax-his2 | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑈 ‘ 𝑥 ) ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 35 | 30 32 33 34 | syl3anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 ‘ 𝑥 ) +ℎ ( 𝑈 ‘ 𝑥 ) ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 36 | 28 35 | eqtrd | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑈 : ℋ ⟶ ℋ ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 37 | 11 36 | sylan | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) = ( ( ( 𝑇 ‘ 𝑥 ) ·ih 𝑦 ) + ( ( 𝑈 ‘ 𝑥 ) ·ih 𝑦 ) ) ) |
| 38 | 10 24 37 | 3eqtr4d | ⊢ ( ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 39 | 38 | ralrimivva | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) |
| 40 | elhmop | ⊢ ( ( 𝑇 +op 𝑈 ) ∈ HrmOp ↔ ( ( 𝑇 +op 𝑈 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℋ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih ( ( 𝑇 +op 𝑈 ) ‘ 𝑦 ) ) = ( ( ( 𝑇 +op 𝑈 ) ‘ 𝑥 ) ·ih 𝑦 ) ) ) | |
| 41 | 4 39 40 | sylanbrc | ⊢ ( ( 𝑇 ∈ HrmOp ∧ 𝑈 ∈ HrmOp ) → ( 𝑇 +op 𝑈 ) ∈ HrmOp ) |