This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of Hilbert space operators is an operator. (Contributed by NM, 21-Feb-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hoaddcl | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffvelcdm | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) | |
| 2 | 1 | adantlr | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑆 ‘ 𝑥 ) ∈ ℋ ) |
| 3 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℋ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) | |
| 4 | 3 | adantll | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) |
| 5 | hvaddcl | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑥 ) ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) | |
| 6 | 2 4 5 | syl2anc | ⊢ ( ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) ∧ 𝑥 ∈ ℋ ) → ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ∈ ℋ ) |
| 7 | 6 | fmpttd | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) : ℋ ⟶ ℋ ) |
| 8 | hosmval | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) = ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) ) | |
| 9 | 8 | feq1d | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ↔ ( 𝑥 ∈ ℋ ↦ ( ( 𝑆 ‘ 𝑥 ) +ℎ ( 𝑇 ‘ 𝑥 ) ) ) : ℋ ⟶ ℋ ) ) |
| 10 | 7 9 | mpbird | ⊢ ( ( 𝑆 : ℋ ⟶ ℋ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝑆 +op 𝑇 ) : ℋ ⟶ ℋ ) |