This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a homeomorphism is a homeomorphism. (Contributed by Mario Carneiro, 14-Sep-2014) (Proof shortened by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeores.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hmeores | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Homeo ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeores.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | hmeocn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 | 1 | cnrest | ⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
| 5 | 3 4 | sylancom | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ) |
| 6 | cntop2 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 8 | eqid | ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 9 | 8 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 10 | 7 9 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
| 11 | df-ima | ⊢ ( 𝐹 “ 𝑌 ) = ran ( 𝐹 ↾ 𝑌 ) | |
| 12 | 11 | eqimss2i | ⊢ ran ( 𝐹 ↾ 𝑌 ) ⊆ ( 𝐹 “ 𝑌 ) |
| 13 | 12 | a1i | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran ( 𝐹 ↾ 𝑌 ) ⊆ ( 𝐹 “ 𝑌 ) ) |
| 14 | imassrn | ⊢ ( 𝐹 “ 𝑌 ) ⊆ ran 𝐹 | |
| 15 | 1 8 | cnf | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 16 | 3 15 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ∪ 𝐾 ) |
| 17 | 16 | frnd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran 𝐹 ⊆ ∪ 𝐾 ) |
| 18 | 14 17 | sstrid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 “ 𝑌 ) ⊆ ∪ 𝐾 ) |
| 19 | cnrest2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ∧ ran ( 𝐹 ↾ 𝑌 ) ⊆ ( 𝐹 “ 𝑌 ) ∧ ( 𝐹 “ 𝑌 ) ⊆ ∪ 𝐾 ) → ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) ) | |
| 20 | 10 13 18 19 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn 𝐾 ) ↔ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) ) |
| 21 | 5 20 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) |
| 22 | hmeocnvcn | ⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 24 | 8 1 | cnf | ⊢ ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) → ◡ 𝐹 : ∪ 𝐾 ⟶ 𝑋 ) |
| 25 | ffun | ⊢ ( ◡ 𝐹 : ∪ 𝐾 ⟶ 𝑋 → Fun ◡ 𝐹 ) | |
| 26 | funcnvres | ⊢ ( Fun ◡ 𝐹 → ◡ ( 𝐹 ↾ 𝑌 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ) | |
| 27 | 23 24 25 26 | 4syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ ( 𝐹 ↾ 𝑌 ) = ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ) |
| 28 | 8 | cnrest | ⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ ( 𝐹 “ 𝑌 ) ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ) |
| 29 | 23 18 28 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ◡ 𝐹 ↾ ( 𝐹 “ 𝑌 ) ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ) |
| 30 | 27 29 | eqeltrd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ) |
| 31 | cntop1 | ⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 32 | 3 31 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐽 ∈ Top ) |
| 33 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 34 | 32 33 | sylib | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 35 | dfdm4 | ⊢ dom ( 𝐹 ↾ 𝑌 ) = ran ◡ ( 𝐹 ↾ 𝑌 ) | |
| 36 | fssres | ⊢ ( ( 𝐹 : 𝑋 ⟶ ∪ 𝐾 ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) : 𝑌 ⟶ ∪ 𝐾 ) | |
| 37 | 16 36 | sylancom | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) : 𝑌 ⟶ ∪ 𝐾 ) |
| 38 | 37 | fdmd | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → dom ( 𝐹 ↾ 𝑌 ) = 𝑌 ) |
| 39 | 35 38 | eqtr3id | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran ◡ ( 𝐹 ↾ 𝑌 ) = 𝑌 ) |
| 40 | eqimss | ⊢ ( ran ◡ ( 𝐹 ↾ 𝑌 ) = 𝑌 → ran ◡ ( 𝐹 ↾ 𝑌 ) ⊆ 𝑌 ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ran ◡ ( 𝐹 ↾ 𝑌 ) ⊆ 𝑌 ) |
| 42 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → 𝑌 ⊆ 𝑋 ) | |
| 43 | cnrest2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ran ◡ ( 𝐹 ↾ 𝑌 ) ⊆ 𝑌 ∧ 𝑌 ⊆ 𝑋 ) → ( ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ↔ ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) ) | |
| 44 | 34 41 42 43 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn 𝐽 ) ↔ ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) ) |
| 45 | 30 44 | mpbid | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) |
| 46 | ishmeo | ⊢ ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Homeo ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ↔ ( ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Cn ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ∧ ◡ ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) Cn ( 𝐽 ↾t 𝑌 ) ) ) ) | |
| 47 | 21 45 46 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐹 ↾ 𝑌 ) ∈ ( ( 𝐽 ↾t 𝑌 ) Homeo ( 𝐾 ↾t ( 𝐹 “ 𝑌 ) ) ) ) |