This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeofval | ⊢ ( 𝐽 Homeo 𝐾 ) = { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) → ( 𝑗 Cn 𝑘 ) = ( 𝐽 Cn 𝐾 ) ) | |
| 2 | oveq12 | ⊢ ( ( 𝑘 = 𝐾 ∧ 𝑗 = 𝐽 ) → ( 𝑘 Cn 𝑗 ) = ( 𝐾 Cn 𝐽 ) ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) → ( 𝑘 Cn 𝑗 ) = ( 𝐾 Cn 𝐽 ) ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) → ( ◡ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) ↔ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) ) |
| 5 | 1 4 | rabeqbidv | ⊢ ( ( 𝑗 = 𝐽 ∧ 𝑘 = 𝐾 ) → { 𝑓 ∈ ( 𝑗 Cn 𝑘 ) ∣ ◡ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) } = { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } ) |
| 6 | df-hmeo | ⊢ Homeo = ( 𝑗 ∈ Top , 𝑘 ∈ Top ↦ { 𝑓 ∈ ( 𝑗 Cn 𝑘 ) ∣ ◡ 𝑓 ∈ ( 𝑘 Cn 𝑗 ) } ) | |
| 7 | ovex | ⊢ ( 𝐽 Cn 𝐾 ) ∈ V | |
| 8 | 7 | rabex | ⊢ { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } ∈ V |
| 9 | 5 6 8 | ovmpoa | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Homeo 𝐾 ) = { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } ) |
| 10 | 6 | mpondm0 | ⊢ ( ¬ ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Homeo 𝐾 ) = ∅ ) |
| 11 | cntop1 | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) | |
| 12 | cntop2 | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) | |
| 13 | 11 12 | jca | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ) |
| 14 | 13 | a1d | ⊢ ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → ( ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) → ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ) ) |
| 15 | 14 | con3rr3 | ⊢ ( ¬ ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝑓 ∈ ( 𝐽 Cn 𝐾 ) → ¬ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) ) |
| 16 | 15 | ralrimiv | ⊢ ( ¬ ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ∀ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ¬ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 17 | rabeq0 | ⊢ ( { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } = ∅ ↔ ∀ 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ¬ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 18 | 16 17 | sylibr | ⊢ ( ¬ ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } = ∅ ) |
| 19 | 10 18 | eqtr4d | ⊢ ( ¬ ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 Homeo 𝐾 ) = { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } ) |
| 20 | 9 19 | pm2.61i | ⊢ ( 𝐽 Homeo 𝐾 ) = { 𝑓 ∈ ( 𝐽 Cn 𝐾 ) ∣ ◡ 𝑓 ∈ ( 𝐾 Cn 𝐽 ) } |