This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of all the homeomorphisms between two topologies. (Contributed by FL, 14-Feb-2007) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hmeofval | |- ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq12 | |- ( ( j = J /\ k = K ) -> ( j Cn k ) = ( J Cn K ) ) |
|
| 2 | oveq12 | |- ( ( k = K /\ j = J ) -> ( k Cn j ) = ( K Cn J ) ) |
|
| 3 | 2 | ancoms | |- ( ( j = J /\ k = K ) -> ( k Cn j ) = ( K Cn J ) ) |
| 4 | 3 | eleq2d | |- ( ( j = J /\ k = K ) -> ( `' f e. ( k Cn j ) <-> `' f e. ( K Cn J ) ) ) |
| 5 | 1 4 | rabeqbidv | |- ( ( j = J /\ k = K ) -> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
| 6 | df-hmeo | |- Homeo = ( j e. Top , k e. Top |-> { f e. ( j Cn k ) | `' f e. ( k Cn j ) } ) |
|
| 7 | ovex | |- ( J Cn K ) e. _V |
|
| 8 | 7 | rabex | |- { f e. ( J Cn K ) | `' f e. ( K Cn J ) } e. _V |
| 9 | 5 6 8 | ovmpoa | |- ( ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
| 10 | 6 | mpondm0 | |- ( -. ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = (/) ) |
| 11 | cntop1 | |- ( f e. ( J Cn K ) -> J e. Top ) |
|
| 12 | cntop2 | |- ( f e. ( J Cn K ) -> K e. Top ) |
|
| 13 | 11 12 | jca | |- ( f e. ( J Cn K ) -> ( J e. Top /\ K e. Top ) ) |
| 14 | 13 | a1d | |- ( f e. ( J Cn K ) -> ( `' f e. ( K Cn J ) -> ( J e. Top /\ K e. Top ) ) ) |
| 15 | 14 | con3rr3 | |- ( -. ( J e. Top /\ K e. Top ) -> ( f e. ( J Cn K ) -> -. `' f e. ( K Cn J ) ) ) |
| 16 | 15 | ralrimiv | |- ( -. ( J e. Top /\ K e. Top ) -> A. f e. ( J Cn K ) -. `' f e. ( K Cn J ) ) |
| 17 | rabeq0 | |- ( { f e. ( J Cn K ) | `' f e. ( K Cn J ) } = (/) <-> A. f e. ( J Cn K ) -. `' f e. ( K Cn J ) ) |
|
| 18 | 16 17 | sylibr | |- ( -. ( J e. Top /\ K e. Top ) -> { f e. ( J Cn K ) | `' f e. ( K Cn J ) } = (/) ) |
| 19 | 10 18 | eqtr4d | |- ( -. ( J e. Top /\ K e. Top ) -> ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } ) |
| 20 | 9 19 | pm2.61i | |- ( J Homeo K ) = { f e. ( J Cn K ) | `' f e. ( K Cn J ) } |