This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Homeomorphisms preserve closedness. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hmeoopn.1 | |- X = U. J |
|
| Assertion | hmeocld | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( F " A ) e. ( Clsd ` K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hmeoopn.1 | |- X = U. J |
|
| 2 | hmeocnvcn | |- ( F e. ( J Homeo K ) -> `' F e. ( K Cn J ) ) |
|
| 3 | 2 | adantr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> `' F e. ( K Cn J ) ) |
| 4 | imacnvcnv | |- ( `' `' F " A ) = ( F " A ) |
|
| 5 | cnclima | |- ( ( `' F e. ( K Cn J ) /\ A e. ( Clsd ` J ) ) -> ( `' `' F " A ) e. ( Clsd ` K ) ) |
|
| 6 | 4 5 | eqeltrrid | |- ( ( `' F e. ( K Cn J ) /\ A e. ( Clsd ` J ) ) -> ( F " A ) e. ( Clsd ` K ) ) |
| 7 | 6 | ex | |- ( `' F e. ( K Cn J ) -> ( A e. ( Clsd ` J ) -> ( F " A ) e. ( Clsd ` K ) ) ) |
| 8 | 3 7 | syl | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) -> ( F " A ) e. ( Clsd ` K ) ) ) |
| 9 | hmeocn | |- ( F e. ( J Homeo K ) -> F e. ( J Cn K ) ) |
|
| 10 | 9 | adantr | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> F e. ( J Cn K ) ) |
| 11 | cnclima | |- ( ( F e. ( J Cn K ) /\ ( F " A ) e. ( Clsd ` K ) ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) |
|
| 12 | 11 | ex | |- ( F e. ( J Cn K ) -> ( ( F " A ) e. ( Clsd ` K ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) ) |
| 13 | 10 12 | syl | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. ( Clsd ` K ) -> ( `' F " ( F " A ) ) e. ( Clsd ` J ) ) ) |
| 14 | eqid | |- U. K = U. K |
|
| 15 | 1 14 | hmeof1o | |- ( F e. ( J Homeo K ) -> F : X -1-1-onto-> U. K ) |
| 16 | f1of1 | |- ( F : X -1-1-onto-> U. K -> F : X -1-1-> U. K ) |
|
| 17 | 15 16 | syl | |- ( F e. ( J Homeo K ) -> F : X -1-1-> U. K ) |
| 18 | f1imacnv | |- ( ( F : X -1-1-> U. K /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
|
| 19 | 17 18 | sylan | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( `' F " ( F " A ) ) = A ) |
| 20 | 19 | eleq1d | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( `' F " ( F " A ) ) e. ( Clsd ` J ) <-> A e. ( Clsd ` J ) ) ) |
| 21 | 13 20 | sylibd | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( ( F " A ) e. ( Clsd ` K ) -> A e. ( Clsd ` J ) ) ) |
| 22 | 8 21 | impbid | |- ( ( F e. ( J Homeo K ) /\ A C_ X ) -> ( A e. ( Clsd ` J ) <-> ( F " A ) e. ( Clsd ` K ) ) ) |