This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hlpr . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlress.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| hlress.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | hlprlem | ⊢ ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlress.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | hlress.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | hlcph | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) | |
| 4 | 1 2 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 5 | 3 4 | syl | ⊢ ( 𝑊 ∈ ℂHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 6 | 1 2 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 7 | 3 6 | syl | ⊢ ( 𝑊 ∈ ℂHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 8 | cphlvec | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec ) | |
| 9 | 1 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 10 | 3 8 9 | 3syl | ⊢ ( 𝑊 ∈ ℂHil → 𝐹 ∈ DivRing ) |
| 11 | 7 10 | eqeltrrd | ⊢ ( 𝑊 ∈ ℂHil → ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
| 12 | hlbn | ⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ Ban ) | |
| 13 | 1 | bnsca | ⊢ ( 𝑊 ∈ Ban → 𝐹 ∈ CMetSp ) |
| 14 | 12 13 | syl | ⊢ ( 𝑊 ∈ ℂHil → 𝐹 ∈ CMetSp ) |
| 15 | 7 14 | eqeltrrd | ⊢ ( 𝑊 ∈ ℂHil → ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) |
| 16 | 5 11 15 | 3jca | ⊢ ( 𝑊 ∈ ℂHil → ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ∧ ( ℂfld ↾s 𝐾 ) ∈ CMetSp ) ) |