This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hlpr . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hlress.f | |- F = ( Scalar ` W ) |
|
| hlress.k | |- K = ( Base ` F ) |
||
| Assertion | hlprlem | |- ( W e. CHil -> ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlress.f | |- F = ( Scalar ` W ) |
|
| 2 | hlress.k | |- K = ( Base ` F ) |
|
| 3 | hlcph | |- ( W e. CHil -> W e. CPreHil ) |
|
| 4 | 1 2 | cphsubrg | |- ( W e. CPreHil -> K e. ( SubRing ` CCfld ) ) |
| 5 | 3 4 | syl | |- ( W e. CHil -> K e. ( SubRing ` CCfld ) ) |
| 6 | 1 2 | cphsca | |- ( W e. CPreHil -> F = ( CCfld |`s K ) ) |
| 7 | 3 6 | syl | |- ( W e. CHil -> F = ( CCfld |`s K ) ) |
| 8 | cphlvec | |- ( W e. CPreHil -> W e. LVec ) |
|
| 9 | 1 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 10 | 3 8 9 | 3syl | |- ( W e. CHil -> F e. DivRing ) |
| 11 | 7 10 | eqeltrrd | |- ( W e. CHil -> ( CCfld |`s K ) e. DivRing ) |
| 12 | hlbn | |- ( W e. CHil -> W e. Ban ) |
|
| 13 | 1 | bnsca | |- ( W e. Ban -> F e. CMetSp ) |
| 14 | 12 13 | syl | |- ( W e. CHil -> F e. CMetSp ) |
| 15 | 7 14 | eqeltrrd | |- ( W e. CHil -> ( CCfld |`s K ) e. CMetSp ) |
| 16 | 5 11 15 | 3jca | |- ( W e. CHil -> ( K e. ( SubRing ` CCfld ) /\ ( CCfld |`s K ) e. DivRing /\ ( CCfld |`s K ) e. CMetSp ) ) |