This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The limit of vector sequence F in a Hilbert space is A , i.e. F converges to A . This means that for any real x , no matter how small, there always exists an integer y such that the norm of any later vector in the sequence minus the limit is less than x . Definition of converge in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlim.1 | ⊢ 𝐴 ∈ V | |
| Assertion | hlimi | ⊢ ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlim.1 | ⊢ 𝐴 ∈ V | |
| 2 | df-hlim | ⊢ ⇝𝑣 = { 〈 𝑓 , 𝑤 〉 ∣ ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) } | |
| 3 | 2 | relopabiv | ⊢ Rel ⇝𝑣 |
| 4 | 3 | brrelex1i | ⊢ ( 𝐹 ⇝𝑣 𝐴 → 𝐹 ∈ V ) |
| 5 | nnex | ⊢ ℕ ∈ V | |
| 6 | fex | ⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ ℕ ∈ V ) → 𝐹 ∈ V ) | |
| 7 | 5 6 | mpan2 | ⊢ ( 𝐹 : ℕ ⟶ ℋ → 𝐹 ∈ V ) |
| 8 | 7 | ad2antrr | ⊢ ( ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) → 𝐹 ∈ V ) |
| 9 | feq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : ℕ ⟶ ℋ ↔ 𝐹 : ℕ ⟶ ℋ ) ) | |
| 10 | eleq1 | ⊢ ( 𝑤 = 𝐴 → ( 𝑤 ∈ ℋ ↔ 𝐴 ∈ ℋ ) ) | |
| 11 | 9 10 | bi2anan9 | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ↔ ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ) ) |
| 12 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) | |
| 13 | oveq12 | ⊢ ( ( ( 𝑓 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ∧ 𝑤 = 𝐴 ) → ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) | |
| 14 | 12 13 | sylan | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) |
| 15 | 14 | fveq2d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) = ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) ) |
| 16 | 15 | breq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 17 | 16 | rexralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 18 | 17 | ralbidv | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 19 | 11 18 | anbi12d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑤 = 𝐴 ) → ( ( ( 𝑓 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝑓 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
| 20 | 19 2 | brabga | ⊢ ( ( 𝐹 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
| 21 | 1 20 | mpan2 | ⊢ ( 𝐹 ∈ V → ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
| 22 | 4 8 21 | pm5.21nii | ⊢ ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |