This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the predicate: The limit of vector sequence F in a Hilbert space is A , i.e. F converges to A . This means that for any real x , no matter how small, there always exists an integer y such that the norm of any later vector in the sequence minus the limit is less than x . Definition of converge in Beran p. 96. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlim.1 | |- A e. _V |
|
| Assertion | hlimi | |- ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlim.1 | |- A e. _V |
|
| 2 | df-hlim | |- ~~>v = { <. f , w >. | ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) } |
|
| 3 | 2 | relopabiv | |- Rel ~~>v |
| 4 | 3 | brrelex1i | |- ( F ~~>v A -> F e. _V ) |
| 5 | nnex | |- NN e. _V |
|
| 6 | fex | |- ( ( F : NN --> ~H /\ NN e. _V ) -> F e. _V ) |
|
| 7 | 5 6 | mpan2 | |- ( F : NN --> ~H -> F e. _V ) |
| 8 | 7 | ad2antrr | |- ( ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) -> F e. _V ) |
| 9 | feq1 | |- ( f = F -> ( f : NN --> ~H <-> F : NN --> ~H ) ) |
|
| 10 | eleq1 | |- ( w = A -> ( w e. ~H <-> A e. ~H ) ) |
|
| 11 | 9 10 | bi2anan9 | |- ( ( f = F /\ w = A ) -> ( ( f : NN --> ~H /\ w e. ~H ) <-> ( F : NN --> ~H /\ A e. ~H ) ) ) |
| 12 | fveq1 | |- ( f = F -> ( f ` z ) = ( F ` z ) ) |
|
| 13 | oveq12 | |- ( ( ( f ` z ) = ( F ` z ) /\ w = A ) -> ( ( f ` z ) -h w ) = ( ( F ` z ) -h A ) ) |
|
| 14 | 12 13 | sylan | |- ( ( f = F /\ w = A ) -> ( ( f ` z ) -h w ) = ( ( F ` z ) -h A ) ) |
| 15 | 14 | fveq2d | |- ( ( f = F /\ w = A ) -> ( normh ` ( ( f ` z ) -h w ) ) = ( normh ` ( ( F ` z ) -h A ) ) ) |
| 16 | 15 | breq1d | |- ( ( f = F /\ w = A ) -> ( ( normh ` ( ( f ` z ) -h w ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 17 | 16 | rexralbidv | |- ( ( f = F /\ w = A ) -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 18 | 17 | ralbidv | |- ( ( f = F /\ w = A ) -> ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x <-> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 19 | 11 18 | anbi12d | |- ( ( f = F /\ w = A ) -> ( ( ( f : NN --> ~H /\ w e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( f ` z ) -h w ) ) < x ) <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
| 20 | 19 2 | brabga | |- ( ( F e. _V /\ A e. _V ) -> ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
| 21 | 1 20 | mpan2 | |- ( F e. _V -> ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) ) |
| 22 | 4 8 21 | pm5.21nii | |- ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |