This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlim.1 | ⊢ 𝐴 ∈ V | |
| Assertion | hlimseqi | ⊢ ( 𝐹 ⇝𝑣 𝐴 → 𝐹 : ℕ ⟶ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlim.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | hlimi | ⊢ ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝐹 ⇝𝑣 𝐴 → ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ) |
| 4 | 3 | simpld | ⊢ ( 𝐹 ⇝𝑣 𝐴 → 𝐹 : ℕ ⟶ ℋ ) |