This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlim.1 | ⊢ 𝐴 ∈ V | |
| Assertion | hlimconvi | ⊢ ( ( 𝐹 ⇝𝑣 𝐴 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlim.1 | ⊢ 𝐴 ∈ V | |
| 2 | 1 | hlimi | ⊢ ( 𝐹 ⇝𝑣 𝐴 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐹 ⇝𝑣 𝐴 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) |
| 4 | breq2 | ⊢ ( 𝑥 = 𝐵 → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝐵 ) ) | |
| 5 | 4 | rexralbidv | ⊢ ( 𝑥 = 𝐵 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝐵 ) ) |
| 6 | 5 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝐵 ) |
| 7 | 3 6 | sylan | ⊢ ( ( 𝐹 ⇝𝑣 𝐴 ∧ 𝐵 ∈ ℝ+ ) → ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝐵 ) |