This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hlim2 | ⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑤 = 𝐴 → ( 𝐹 ⇝𝑣 𝑤 ↔ 𝐹 ⇝𝑣 𝐴 ) ) | |
| 2 | oveq2 | ⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) = ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑤 = 𝐴 → ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) = ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) ) |
| 4 | 3 | breq1d | ⊢ ( 𝑤 = 𝐴 → ( ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 5 | 4 | rexralbidv | ⊢ ( 𝑤 = 𝐴 → ( ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 6 | 5 | ralbidv | ⊢ ( 𝑤 = 𝐴 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |
| 7 | 1 6 | bibi12d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ↔ ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑤 = 𝐴 → ( ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) ↔ ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) ) |
| 9 | vex | ⊢ 𝑤 ∈ V | |
| 10 | 9 | hlimi | ⊢ ( 𝐹 ⇝𝑣 𝑤 ↔ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) |
| 11 | 10 | baib | ⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝑤 ∈ ℋ ) → ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) |
| 12 | 11 | expcom | ⊢ ( 𝑤 ∈ ℋ → ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝑤 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝑤 ) ) < 𝑥 ) ) ) |
| 13 | 8 12 | vtoclga | ⊢ ( 𝐴 ∈ ℋ → ( 𝐹 : ℕ ⟶ ℋ → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) ) |
| 14 | 13 | impcom | ⊢ ( ( 𝐹 : ℕ ⟶ ℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐹 ⇝𝑣 𝐴 ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ℕ ∀ 𝑧 ∈ ( ℤ≥ ‘ 𝑦 ) ( normℎ ‘ ( ( 𝐹 ‘ 𝑧 ) −ℎ 𝐴 ) ) < 𝑥 ) ) |