This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hlim.1 | |- A e. _V |
|
| Assertion | hlimconvi | |- ( ( F ~~>v A /\ B e. RR+ ) -> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlim.1 | |- A e. _V |
|
| 2 | 1 | hlimi | |- ( F ~~>v A <-> ( ( F : NN --> ~H /\ A e. ~H ) /\ A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) ) |
| 3 | 2 | simprbi | |- ( F ~~>v A -> A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x ) |
| 4 | breq2 | |- ( x = B -> ( ( normh ` ( ( F ` z ) -h A ) ) < x <-> ( normh ` ( ( F ` z ) -h A ) ) < B ) ) |
|
| 5 | 4 | rexralbidv | |- ( x = B -> ( E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x <-> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < B ) ) |
| 6 | 5 | rspccva | |- ( ( A. x e. RR+ E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < x /\ B e. RR+ ) -> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < B ) |
| 7 | 3 6 | sylan | |- ( ( F ~~>v A /\ B e. RR+ ) -> E. y e. NN A. z e. ( ZZ>= ` y ) ( normh ` ( ( F ` z ) -h A ) ) < B ) |