This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of the norm of a vector of Hilbert space. Definition of norm in Beran p. 96. (Contributed by NM, 6-Jun-2008) (Revised by Mario Carneiro, 15-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfhnorm2 | ⊢ normℎ = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-hnorm | ⊢ normℎ = ( 𝑥 ∈ dom dom ·ih ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) | |
| 2 | ax-hfi | ⊢ ·ih : ( ℋ × ℋ ) ⟶ ℂ | |
| 3 | 2 | fdmi | ⊢ dom ·ih = ( ℋ × ℋ ) |
| 4 | 3 | dmeqi | ⊢ dom dom ·ih = dom ( ℋ × ℋ ) |
| 5 | dmxpid | ⊢ dom ( ℋ × ℋ ) = ℋ | |
| 6 | 4 5 | eqtr2i | ⊢ ℋ = dom dom ·ih |
| 7 | 6 | mpteq1i | ⊢ ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) = ( 𝑥 ∈ dom dom ·ih ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |
| 8 | 1 7 | eqtr4i | ⊢ normℎ = ( 𝑥 ∈ ℋ ↦ ( √ ‘ ( 𝑥 ·ih 𝑥 ) ) ) |