This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hilnorm.5 | |- ~H = ( BaseSet ` U ) |
|
| hilnorm.2 | |- .ih = ( .iOLD ` U ) |
||
| hilnorm.9 | |- U e. NrmCVec |
||
| Assertion | hilnormi | |- normh = ( normCV ` U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hilnorm.5 | |- ~H = ( BaseSet ` U ) |
|
| 2 | hilnorm.2 | |- .ih = ( .iOLD ` U ) |
|
| 3 | hilnorm.9 | |- U e. NrmCVec |
|
| 4 | eqid | |- ( normCV ` U ) = ( normCV ` U ) |
|
| 5 | 1 4 2 | ipnm | |- ( ( U e. NrmCVec /\ x e. ~H ) -> ( ( normCV ` U ) ` x ) = ( sqrt ` ( x .ih x ) ) ) |
| 6 | 3 5 | mpan | |- ( x e. ~H -> ( ( normCV ` U ) ` x ) = ( sqrt ` ( x .ih x ) ) ) |
| 7 | 6 | mpteq2ia | |- ( x e. ~H |-> ( ( normCV ` U ) ` x ) ) = ( x e. ~H |-> ( sqrt ` ( x .ih x ) ) ) |
| 8 | 1 4 | nvf | |- ( U e. NrmCVec -> ( normCV ` U ) : ~H --> RR ) |
| 9 | 8 | feqmptd | |- ( U e. NrmCVec -> ( normCV ` U ) = ( x e. ~H |-> ( ( normCV ` U ) ` x ) ) ) |
| 10 | 3 9 | ax-mp | |- ( normCV ` U ) = ( x e. ~H |-> ( ( normCV ` U ) ` x ) ) |
| 11 | dfhnorm2 | |- normh = ( x e. ~H |-> ( sqrt ` ( x .ih x ) ) ) |
|
| 12 | 7 10 11 | 3eqtr4ri | |- normh = ( normCV ` U ) |