This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abelian group property of subspace addition. (Contributed by NM, 9-Apr-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hhssablo | ⊢ ( 𝐻 ∈ Sℋ → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) → ( 𝐻 × 𝐻 ) = ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × 𝐻 ) ) | |
| 2 | xpeq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) → ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × 𝐻 ) = ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) ) ) | |
| 3 | 1 2 | eqtrd | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) → ( 𝐻 × 𝐻 ) = ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) ) ) |
| 4 | 3 | reseq2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) = ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) ) ) ) |
| 5 | 4 | eleq1d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) → ( ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp ↔ ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) ) ) ∈ AbelOp ) ) |
| 6 | helsh | ⊢ ℋ ∈ Sℋ | |
| 7 | 6 | elimel | ⊢ if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) ∈ Sℋ |
| 8 | 7 | hhssabloi | ⊢ ( +ℎ ↾ ( if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) × if ( 𝐻 ∈ Sℋ , 𝐻 , ℋ ) ) ) ∈ AbelOp |
| 9 | 5 8 | dedth | ⊢ ( 𝐻 ∈ Sℋ → ( +ℎ ↾ ( 𝐻 × 𝐻 ) ) ∈ AbelOp ) |