This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of linear operators on Hilbert space. (See df-hosum for definition of operator.) (Contributed by NM, 18-Jan-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lnop | ⊢ LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clo | ⊢ LinOp | |
| 1 | vt | ⊢ 𝑡 | |
| 2 | chba | ⊢ ℋ | |
| 3 | cmap | ⊢ ↑m | |
| 4 | 2 2 3 | co | ⊢ ( ℋ ↑m ℋ ) |
| 5 | vx | ⊢ 𝑥 | |
| 6 | cc | ⊢ ℂ | |
| 7 | vy | ⊢ 𝑦 | |
| 8 | vz | ⊢ 𝑧 | |
| 9 | 1 | cv | ⊢ 𝑡 |
| 10 | 5 | cv | ⊢ 𝑥 |
| 11 | csm | ⊢ ·ℎ | |
| 12 | 7 | cv | ⊢ 𝑦 |
| 13 | 10 12 11 | co | ⊢ ( 𝑥 ·ℎ 𝑦 ) |
| 14 | cva | ⊢ +ℎ | |
| 15 | 8 | cv | ⊢ 𝑧 |
| 16 | 13 15 14 | co | ⊢ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) |
| 17 | 16 9 | cfv | ⊢ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) |
| 18 | 12 9 | cfv | ⊢ ( 𝑡 ‘ 𝑦 ) |
| 19 | 10 18 11 | co | ⊢ ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) |
| 20 | 15 9 | cfv | ⊢ ( 𝑡 ‘ 𝑧 ) |
| 21 | 19 20 14 | co | ⊢ ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
| 22 | 17 21 | wceq | ⊢ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
| 23 | 22 8 2 | wral | ⊢ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
| 24 | 23 7 2 | wral | ⊢ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
| 25 | 24 5 6 | wral | ⊢ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) |
| 26 | 25 1 4 | crab | ⊢ { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |
| 27 | 0 26 | wceq | ⊢ LinOp = { 𝑡 ∈ ( ℋ ↑m ℋ ) ∣ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( 𝑡 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑡 ‘ 𝑦 ) ) +ℎ ( 𝑡 ‘ 𝑧 ) ) } |