This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008) (Proof shortened by Mario Carneiro, 14-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhcms.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| hhcms.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| Assertion | hhcms | ⊢ 𝐷 ∈ ( CMet ‘ ℋ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcms.1 | ⊢ 𝑈 = 〈 〈 +ℎ , ·ℎ 〉 , normℎ 〉 | |
| 2 | hhcms.2 | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 4 | 1 2 | hhmet | ⊢ 𝐷 ∈ ( Met ‘ ℋ ) |
| 5 | 1 2 | hhcau | ⊢ Cauchy = ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) |
| 6 | 5 | eleq2i | ⊢ ( 𝑓 ∈ Cauchy ↔ 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ) |
| 7 | elin | ⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ) | |
| 8 | ax-hilex | ⊢ ℋ ∈ V | |
| 9 | nnex | ⊢ ℕ ∈ V | |
| 10 | 8 9 | elmap | ⊢ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ↔ 𝑓 : ℕ ⟶ ℋ ) |
| 11 | 10 | anbi2i | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 ∈ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) ) |
| 12 | 7 11 | bitri | ⊢ ( 𝑓 ∈ ( ( Cau ‘ 𝐷 ) ∩ ( ℋ ↑m ℕ ) ) ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) ) |
| 13 | 6 12 | bitri | ⊢ ( 𝑓 ∈ Cauchy ↔ ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) ) |
| 14 | ax-hcompl | ⊢ ( 𝑓 ∈ Cauchy → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) | |
| 15 | 13 14 | sylbir | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) → ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 ) |
| 16 | 1 2 3 | hhlm | ⊢ ⇝𝑣 = ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ↾ ( ℋ ↑m ℕ ) ) |
| 17 | 16 | breqi | ⊢ ( 𝑓 ⇝𝑣 𝑥 ↔ 𝑓 ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ) |
| 18 | vex | ⊢ 𝑥 ∈ V | |
| 19 | 18 | brresi | ⊢ ( 𝑓 ( ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ↾ ( ℋ ↑m ℕ ) ) 𝑥 ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 ) ) |
| 20 | 17 19 | bitri | ⊢ ( 𝑓 ⇝𝑣 𝑥 ↔ ( 𝑓 ∈ ( ℋ ↑m ℕ ) ∧ 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 ) ) |
| 21 | vex | ⊢ 𝑓 ∈ V | |
| 22 | 21 18 | breldm | ⊢ ( 𝑓 ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) 𝑥 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 23 | 20 22 | simplbiim | ⊢ ( 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 24 | 23 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 25 | 15 24 | syl | ⊢ ( ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ∧ 𝑓 : ℕ ⟶ ℋ ) → 𝑓 ∈ dom ( ⇝𝑡 ‘ ( MetOpen ‘ 𝐷 ) ) ) |
| 26 | 3 4 25 | iscmet3i | ⊢ 𝐷 ∈ ( CMet ‘ ℋ ) |