This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008) (Proof shortened by Mario Carneiro, 14-May-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hhcms.1 | |- U = <. <. +h , .h >. , normh >. |
|
| hhcms.2 | |- D = ( IndMet ` U ) |
||
| Assertion | hhcms | |- D e. ( CMet ` ~H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hhcms.1 | |- U = <. <. +h , .h >. , normh >. |
|
| 2 | hhcms.2 | |- D = ( IndMet ` U ) |
|
| 3 | eqid | |- ( MetOpen ` D ) = ( MetOpen ` D ) |
|
| 4 | 1 2 | hhmet | |- D e. ( Met ` ~H ) |
| 5 | 1 2 | hhcau | |- Cauchy = ( ( Cau ` D ) i^i ( ~H ^m NN ) ) |
| 6 | 5 | eleq2i | |- ( f e. Cauchy <-> f e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) ) |
| 7 | elin | |- ( f e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( f e. ( Cau ` D ) /\ f e. ( ~H ^m NN ) ) ) |
|
| 8 | ax-hilex | |- ~H e. _V |
|
| 9 | nnex | |- NN e. _V |
|
| 10 | 8 9 | elmap | |- ( f e. ( ~H ^m NN ) <-> f : NN --> ~H ) |
| 11 | 10 | anbi2i | |- ( ( f e. ( Cau ` D ) /\ f e. ( ~H ^m NN ) ) <-> ( f e. ( Cau ` D ) /\ f : NN --> ~H ) ) |
| 12 | 7 11 | bitri | |- ( f e. ( ( Cau ` D ) i^i ( ~H ^m NN ) ) <-> ( f e. ( Cau ` D ) /\ f : NN --> ~H ) ) |
| 13 | 6 12 | bitri | |- ( f e. Cauchy <-> ( f e. ( Cau ` D ) /\ f : NN --> ~H ) ) |
| 14 | ax-hcompl | |- ( f e. Cauchy -> E. x e. ~H f ~~>v x ) |
|
| 15 | 13 14 | sylbir | |- ( ( f e. ( Cau ` D ) /\ f : NN --> ~H ) -> E. x e. ~H f ~~>v x ) |
| 16 | 1 2 3 | hhlm | |- ~~>v = ( ( ~~>t ` ( MetOpen ` D ) ) |` ( ~H ^m NN ) ) |
| 17 | 16 | breqi | |- ( f ~~>v x <-> f ( ( ~~>t ` ( MetOpen ` D ) ) |` ( ~H ^m NN ) ) x ) |
| 18 | vex | |- x e. _V |
|
| 19 | 18 | brresi | |- ( f ( ( ~~>t ` ( MetOpen ` D ) ) |` ( ~H ^m NN ) ) x <-> ( f e. ( ~H ^m NN ) /\ f ( ~~>t ` ( MetOpen ` D ) ) x ) ) |
| 20 | 17 19 | bitri | |- ( f ~~>v x <-> ( f e. ( ~H ^m NN ) /\ f ( ~~>t ` ( MetOpen ` D ) ) x ) ) |
| 21 | vex | |- f e. _V |
|
| 22 | 21 18 | breldm | |- ( f ( ~~>t ` ( MetOpen ` D ) ) x -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 23 | 20 22 | simplbiim | |- ( f ~~>v x -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 24 | 23 | rexlimivw | |- ( E. x e. ~H f ~~>v x -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 25 | 15 24 | syl | |- ( ( f e. ( Cau ` D ) /\ f : NN --> ~H ) -> f e. dom ( ~~>t ` ( MetOpen ` D ) ) ) |
| 26 | 3 4 25 | iscmet3i | |- D e. ( CMet ` ~H ) |