This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If there is only a finite number of symbols, the number of words of a fixed length over these sysmbols is the number of these symbols raised to the power of the length. (Contributed by Alexander van der Vekens, 25-Mar-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashwrdn | |- ( ( V e. Fin /\ N e. NN0 ) -> ( # ` { w e. Word V | ( # ` w ) = N } ) = ( ( # ` V ) ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wrdnval | |- ( ( V e. Fin /\ N e. NN0 ) -> { w e. Word V | ( # ` w ) = N } = ( V ^m ( 0 ..^ N ) ) ) |
|
| 2 | 1 | fveq2d | |- ( ( V e. Fin /\ N e. NN0 ) -> ( # ` { w e. Word V | ( # ` w ) = N } ) = ( # ` ( V ^m ( 0 ..^ N ) ) ) ) |
| 3 | fzofi | |- ( 0 ..^ N ) e. Fin |
|
| 4 | hashmap | |- ( ( V e. Fin /\ ( 0 ..^ N ) e. Fin ) -> ( # ` ( V ^m ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ ( # ` ( 0 ..^ N ) ) ) ) |
|
| 5 | 3 4 | mpan2 | |- ( V e. Fin -> ( # ` ( V ^m ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ ( # ` ( 0 ..^ N ) ) ) ) |
| 6 | hashfzo0 | |- ( N e. NN0 -> ( # ` ( 0 ..^ N ) ) = N ) |
|
| 7 | 6 | oveq2d | |- ( N e. NN0 -> ( ( # ` V ) ^ ( # ` ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ N ) ) |
| 8 | 5 7 | sylan9eq | |- ( ( V e. Fin /\ N e. NN0 ) -> ( # ` ( V ^m ( 0 ..^ N ) ) ) = ( ( # ` V ) ^ N ) ) |
| 9 | 2 8 | eqtrd | |- ( ( V e. Fin /\ N e. NN0 ) -> ( # ` { w e. Word V | ( # ` w ) = N } ) = ( ( # ` V ) ^ N ) ) |