This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the size of a restricted class abstraction restricted to a singleton is 1, the condition of the class abstraction must hold for the singleton. (Contributed by Alexander van der Vekens, 3-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashrabsn1 | |- ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- { x e. { A } | ph } = { x e. { A } | ph } |
|
| 2 | rabrsn | |- ( { x e. { A } | ph } = { x e. { A } | ph } -> ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) ) |
|
| 3 | fveqeq2 | |- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 <-> ( # ` (/) ) = 1 ) ) |
|
| 4 | hash0 | |- ( # ` (/) ) = 0 |
|
| 5 | 4 | eqeq1i | |- ( ( # ` (/) ) = 1 <-> 0 = 1 ) |
| 6 | 0ne1 | |- 0 =/= 1 |
|
| 7 | eqneqall | |- ( 0 = 1 -> ( 0 =/= 1 -> [. A / x ]. ph ) ) |
|
| 8 | 6 7 | mpi | |- ( 0 = 1 -> [. A / x ]. ph ) |
| 9 | 5 8 | sylbi | |- ( ( # ` (/) ) = 1 -> [. A / x ]. ph ) |
| 10 | 3 9 | biimtrdi | |- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
| 11 | snidg | |- ( A e. _V -> A e. { A } ) |
|
| 12 | 11 | adantr | |- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> A e. { A } ) |
| 13 | eleq2 | |- ( { x e. { A } | ph } = { A } -> ( A e. { x e. { A } | ph } <-> A e. { A } ) ) |
|
| 14 | 13 | adantl | |- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> ( A e. { x e. { A } | ph } <-> A e. { A } ) ) |
| 15 | 12 14 | mpbird | |- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> A e. { x e. { A } | ph } ) |
| 16 | nfcv | |- F/_ x { A } |
|
| 17 | 16 | elrabsf | |- ( A e. { x e. { A } | ph } <-> ( A e. { A } /\ [. A / x ]. ph ) ) |
| 18 | 17 | simprbi | |- ( A e. { x e. { A } | ph } -> [. A / x ]. ph ) |
| 19 | 15 18 | syl | |- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> [. A / x ]. ph ) |
| 20 | 19 | a1d | |- ( ( A e. _V /\ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
| 21 | 20 | ex | |- ( A e. _V -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) |
| 22 | snprc | |- ( -. A e. _V <-> { A } = (/) ) |
|
| 23 | eqeq2 | |- ( { A } = (/) -> ( { x e. { A } | ph } = { A } <-> { x e. { A } | ph } = (/) ) ) |
|
| 24 | ax-1ne0 | |- 1 =/= 0 |
|
| 25 | eqneqall | |- ( 1 = 0 -> ( 1 =/= 0 -> [. A / x ]. ph ) ) |
|
| 26 | 24 25 | mpi | |- ( 1 = 0 -> [. A / x ]. ph ) |
| 27 | 26 | eqcoms | |- ( 0 = 1 -> [. A / x ]. ph ) |
| 28 | 5 27 | sylbi | |- ( ( # ` (/) ) = 1 -> [. A / x ]. ph ) |
| 29 | 3 28 | biimtrdi | |- ( { x e. { A } | ph } = (/) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
| 30 | 23 29 | biimtrdi | |- ( { A } = (/) -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) |
| 31 | 22 30 | sylbi | |- ( -. A e. _V -> ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) ) |
| 32 | 21 31 | pm2.61i | |- ( { x e. { A } | ph } = { A } -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
| 33 | 10 32 | jaoi | |- ( ( { x e. { A } | ph } = (/) \/ { x e. { A } | ph } = { A } ) -> ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) ) |
| 34 | 1 2 33 | mp2b | |- ( ( # ` { x e. { A } | ph } ) = 1 -> [. A / x ]. ph ) |