This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashfinmndnn.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| hashfinmndnn.2 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| hashfinmndnn.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| Assertion | hashfinmndnn | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfinmndnn.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | hashfinmndnn.2 | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 3 | hashfinmndnn.3 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 4 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 5 | 3 4 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | 1 6 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 8 | 2 7 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
| 9 | 8 3 | hashelne0d | ⊢ ( 𝜑 → ¬ ( ♯ ‘ 𝐵 ) = 0 ) |
| 10 | 9 | neqned | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ≠ 0 ) |
| 11 | elnnne0 | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ ↔ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ≠ 0 ) ) | |
| 12 | 5 10 11 | sylanbrc | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ ) |