This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashfinmndnn.1 | |- B = ( Base ` G ) |
|
| hashfinmndnn.2 | |- ( ph -> G e. Mnd ) |
||
| hashfinmndnn.3 | |- ( ph -> B e. Fin ) |
||
| Assertion | hashfinmndnn | |- ( ph -> ( # ` B ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashfinmndnn.1 | |- B = ( Base ` G ) |
|
| 2 | hashfinmndnn.2 | |- ( ph -> G e. Mnd ) |
|
| 3 | hashfinmndnn.3 | |- ( ph -> B e. Fin ) |
|
| 4 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 5 | 3 4 | syl | |- ( ph -> ( # ` B ) e. NN0 ) |
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | 1 6 | mndidcl | |- ( G e. Mnd -> ( 0g ` G ) e. B ) |
| 8 | 2 7 | syl | |- ( ph -> ( 0g ` G ) e. B ) |
| 9 | 8 3 | hashelne0d | |- ( ph -> -. ( # ` B ) = 0 ) |
| 10 | 9 | neqned | |- ( ph -> ( # ` B ) =/= 0 ) |
| 11 | elnnne0 | |- ( ( # ` B ) e. NN <-> ( ( # ` B ) e. NN0 /\ ( # ` B ) =/= 0 ) ) |
|
| 12 | 5 10 11 | sylanbrc | |- ( ph -> ( # ` B ) e. NN ) |