This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size function is a function into the extended nonnegative integers. (Contributed by Mario Carneiro, 13-Sep-2013) (Revised by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashfxnn0 | ⊢ ♯ : V ⟶ ℕ0* |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 2 | eqid | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) | |
| 3 | 1 2 | hashkf | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 |
| 4 | pnfex | ⊢ +∞ ∈ V | |
| 5 | 4 | fconst | ⊢ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } |
| 6 | 3 5 | pm3.2i | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 ∧ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } ) |
| 7 | disjdif | ⊢ ( Fin ∩ ( V ∖ Fin ) ) = ∅ | |
| 8 | fun | ⊢ ( ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) : Fin ⟶ ℕ0 ∧ ( ( V ∖ Fin ) × { +∞ } ) : ( V ∖ Fin ) ⟶ { +∞ } ) ∧ ( Fin ∩ ( V ∖ Fin ) ) = ∅ ) → ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) ) | |
| 9 | 6 7 8 | mp2an | ⊢ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) |
| 10 | df-hash | ⊢ ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) | |
| 11 | eqid | ⊢ V = V | |
| 12 | df-xnn0 | ⊢ ℕ0* = ( ℕ0 ∪ { +∞ } ) | |
| 13 | feq123 | ⊢ ( ( ♯ = ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) ∧ V = V ∧ ℕ0* = ( ℕ0 ∪ { +∞ } ) ) → ( ♯ : V ⟶ ℕ0* ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : V ⟶ ( ℕ0 ∪ { +∞ } ) ) ) | |
| 14 | 10 11 12 13 | mp3an | ⊢ ( ♯ : V ⟶ ℕ0* ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 15 | unvdif | ⊢ ( Fin ∪ ( V ∖ Fin ) ) = V | |
| 16 | 15 | feq2i | ⊢ ( ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : V ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 17 | 14 16 | bitr4i | ⊢ ( ♯ : V ⟶ ℕ0* ↔ ( ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ∘ card ) ∪ ( ( V ∖ Fin ) × { +∞ } ) ) : ( Fin ∪ ( V ∖ Fin ) ) ⟶ ( ℕ0 ∪ { +∞ } ) ) |
| 18 | 9 17 | mpbir | ⊢ ♯ : V ⟶ ℕ0* |